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Statistical fractal adsorption isotherms, linear energy relations, and power-law trapping-time
distributions in porous media

Marcel Ovidiu Vlad,1,2 Gianfranco Cerofolini,3 and John Ross1

1Department of Chemistry, Stanford University, Stanford, California 94305-5080
2Center of Mathematical Statistics, Casa Academiei Romane, Calea Septembrie 13, 76100 Bucharest, Romania

3ST Microelectronics, 20041 Agrate MI, Italy
~Received 22 December 1999!

Drazer and Zanette@Phys. Rev. E60, 5858 ~1999!# have reported on interesting experiments which show
that trapping-time distributions in porous media obey a scaling law of the negative power-law type. Unfortu-
nately, their theoretical interpretation of the experimental data has physical and mathematical inconsistencies
and errors. Drazer and Zanette assume the existence of a distribution of local adsorption isotherms for which
the random parameter is not a thermodynamic function, but a kinetic parameter, the trapping time. Moreover,
they mistakenly identify the reciprocal value of a rate coefficient with the instantaneous~fluctuating! value of
the trapping time. Their approach leads to mathematically inconsistent probability densities for the trapping
times, which they find to be non-normalizable. We suggest a different theory, which is physically and math-
ematically consistent. We start with the classical patch approximation, which assumes the existence of a
distribution of adsorption heats, and introduce two linear energy relationships between the activation energies
of the adsorption and desorption processes and the adsorption heat. If the distribution of the adsorption heat
obeys the exponential law of Zeldovich and Roghinsky, then both the adsorption isotherm and the probability
density of trapping times can be evaluated analytically in terms of the incomplete beta and gamma functions,
respectively. Our probability density of the trapping times is mathematically consistent; that is, it is non-
negative and normalized to unity. For large times it has a long tail which obeys a scaling law of the negative
power-law type, which is consistent with the experimental data of Drazer and Zanette. By using their data we
can evaluate the numerical values of the proportionality coefficients in the linear energy relations. The theory
suggests that experimental study of the temperature dependence of the fractal exponents helps to elucidate the
mechanism of the adsorption-desorption process.

PACS number~s!: 47.55.Mh, 05.40.2a
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I. INTRODUCTION

The study of fractal time and of its connections with d
persive diffusion was initiated by Montroll and co-worke
in the early 1970s@1,2#. Recently, this subject has become
important topic of applied statistical physics, with applic
tions in various branches of science and technology, rang
from population dynamics and vital statistics to appli
chemical kinetics and radiochemistry and to reliability ana
sis and economics@3,4#.

In an interesting paper, Drazer and Zanette@5# have
shown that the solute transport in desorption experiment
porous media, made of packings of activated carbon gra
follows the dispersive mechanism suggested by Montroll
co-workers, which corresponds to power-law trapping-ti
distributions. They have used nonconsolidated packings
relatively uniform, spherical, activated carbon grains o
tained from apricot pits, with an average radius ofd
5(0.1360.01) cm. The carbon grains were packed in a
cm-high, 2.54-cm-inner-diameter cylinder. In the expe
ments, the porous medium is initially filled up with aqueo
0.1 M NaI solution tagged with131I. The authors have per
formed measurements of tracer adsorption and dispersio
which a stepwise variation of the concentration of131I is
induced at timet50 and kept constant thereafter. Two d
ferent types of experiments with a total constant flow r
were carried out by using different displacing fluids. In t
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first set of experiments, the system was flushed with an
tagged NaI solution having the same concentration as
initial, labeled, solution~exchange experiments!, whereas in
the second set of experiments the untagged NaI solution
replaced by distilled water~desorption experiments!. The re-
sults of the exchange experiments show that the replacem
of the radioactive isotope131I obeys a classical adsorption
desorption and dispersion mechanism commonly enco
tered in chemical engineering. In this case the observed c
centration profiles can be reproduced theoretically by usin
classical reaction-convection-diffusion equation. The tim
dependence of the concentration of131I is described by a se
of kinetic curves, which decay very fast to zero. In the ca
of desorption experiments, the concentration profiles131I
also decrease to zero for large times, but this decreas
much slower than in the case of exchange experiments
the case of desorption for large times, the concentration p
files converge towards a long-time tail of the negati
power-law type,C(t);t2m, t@0, characterized by a fracta
exponentm50.63. Such long tails cannot be explained
assuming a classical reaction-diffusion mechanism. The
perimental results of the authors suggest that the displ
ment of the radioactive isotope131I involves a very slow,
dispersive~Montroll and co-workers! diffusion process. The
qualitative physical picture suggested by the authors is
following: the motion of an atom of the radioactive isotop
along the column can be represented by a hopping me
nism involving a succession of desorption and readsop
processes, which is basically a random walk in continuo
837 ©2000 The American Physical Society
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838 PRE 62VLAD, CEROFOLINI, AND ROSS
time ~CTRW @1–4#!. According to Montroll and co-workers
theory of dispersive diffusion, such a continuous time ra
dom walk may lead to concentration profiles with long-tim
tails of the negative power-law type if the probability dens
of the trapping time of the radioactive isotope in the a
sorbed state on the surface has a long time tail@1–4#.

Drazer and Zanette have tried to give a theoretical in
pretation of their experimental results, but unfortunately th
treatment contains a number of errors and confusions
order to compute the probability density of the trapping tim
they assume that at any position in their apparatus, there
local equilibrium between the solution and the surface of
carbon grains and that the carbon surface is heterogene
They invoke the homottatic patch approximation in hete
geneous catalysis@6# according to which the overall adsorp
tion isotherm is made up of a contribution of local Langm
adsorption isotherms

u local5
K local

eq C

11K local
eq C

, ~1!

whereu local is the local coverage of the surface,C is the local
concentration of the chemical in the solution, and

K local
eq ~T!5klocal

1 /klocal
2 5K local

eq ~`!expF2
DH

kBTG ~2!

is the local equilibrium constant of the adsorption proces

klocal
1 ~T!5klocal

1 ~`!expF2
E6

kBTG ~3!

are local adsorption and desorption rates, respectively,E6

are activation energies,

DH5E12E252E ~4!

is the local change of the enthalpy during the adsorpt
process,E is the adsorption heat,kB is Boltzmann’s constant
and T is the temperature of the system. Drazer and Zan
mention that, according to the patch approximation in h
erogeneous catalysis, different patches of the surface
characterized by different adsorption enthalpies and that t
statistical distribution can be described in terms of a pr
ability density

p~E!dE with E p~E!dE51; ~5!

the total adsorption isotherm can be expressed as an ave
of the local isotherm~1! with respect to the adsorption hea

u5E u local~E!p~E!dE5E K local
eq ~E,T!C

11K local
eq ~E,T!C

p~E!dE.

~6!

So far, there is no problem. At this point, however, th
make the conjecture that the local equilibrium constan
proportional to the trapping timet of a molecule on the
surface:
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K local

eq ~E,T!, ~7!

wherew is a proportionality factor. By using this conjectur
which is open to criticism, they express the overall adso
tion isotherm~6! in the form

u5E u local~t!w~t!dt5E wtC

11wtC
w~t!dt, ~8!

where

w~t!dt with E w~t!dt51 ~9!

is the probability that the trapping time on the surface ha
value betweent andt1dt.

For the experimental system studied, the overall adso
tion isotherm obeys the Freundlich power law

u5kCa, 1.a.0. ~10!

By combining Eqs.~8! and~9!, Drazer and Zanette obtain a
integral equation inw~t! which can be solved by using th
Stieltjes transform, resulting in

w~t!5J a/t11a. ~11!

Equation~11! is consistent with the experimental data. T
probability density~11! has a singularity fort50 and be-
cause of this singularity the integral*0

`w(t)dt5`; that is,
the probability density of the trapping time is not normali
able, a result which is mathematically incorrect. This div
gence is due to the fact that the Freundlich isotherm~10! is
not correct for large concentrations. Although in the repor
experiments the concentrations are in the range for which
Freundlich isotherm is valid, the theoretical approach ba
on the assumption that the power law~11! holds for any
values of the trapping time, from zero to infinity, is phys
cally and mathematically inconsistent. We emphasize t
for consistency with experimental data it is enough if on
the tail of the probability densityw~t! of the trapping times
has the scaling form~11!. This is due to the fact that, accord
ing to the theory of Montroll and co-workers, the properti
of dispersive diffusion are determined by the Laplace tra
form of the probability density of the trapping time,w̄(s)
5*0

`w(t)exp(2st)dt, for small values of the Laplace vari
able,s→0. The form of the Laplace transformw̄(s) of the
trapping time probability densityw~t! depends only on the
shape of the tail of the functionw~t! ast→` and is insen-
sitive with respect to the details of the functionw~t! for small
trapping times. We conclude that a physically consist
theory should come up with a probability densityw~t! obey-
ing the scaling law~11! for large trapping timest→`, but
which, unlike Eq.~11!, has a cumulative distribution func
tion F(t)5*0

tw(t)dt which is not singular fort50—that
is, lim F(t)5finite ast→0—ensuring that the probability
densityw~t! is properly normalized to unity.

The unproven conjecture~7! generates serious inconsi
tencies in the theory, due to the fact that it assumes
existence of a deterministic relationship between two rand
variables, the trapping time and the local adsorption heat
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PRE 62 839STATISTICAL FRACTAL ADSORPTION ISOTHERMS, . . .
general, within the framework of the homottatic patch a
proximation used by Drazer and Zanette, there is no de
ministic relationship between the trapping time and the lo
adsorption heat and the relation between these two ran
variables is not deterministic. The conjecture~7! is generated
by a confusion between the reciprocal value of the adso
tion rate, 1/klocal

2 , and the trapping time. Drazer and Zane
assume, without proof, that 1/klocal

2 is equal to a random
~fluctuating! value of the trapping time, corresponding to t
adsorption heatE. We are going to show that this assumpti
is not correct and that, under suitable circumstances, at l
equilibrium, 1/klocal

2 , can be interpreted as theconditional
average trapping timeof a local equilibrium state characte
ized by the adsorption heatE.

The purpose of this article is to develop a physically co
sistent theory for explaining the experimental results
Drazer and Zanette. We shall show that the conjecture~7! is
not appropriate and, moreover, that it is not necessary
explaining the experimental data. An adequate theoret
description of their data can be given by combining the cl
sical homottatic patch approximation with the theory of lif
time distributions of reaction intermediates in compl
chemical systems@7#. The structure of the paper is the fo
lowing. In Sec. II we present the main assumptions of
approach. In Sec. III we study the equilibrium properties
the system, expressed in terms of the overall adsorption
therm. Section IV deals with the evaluation of the trappi
time distributions. Finally, in Sec. V we compare our theo
with the Drazer-Zanette approach.

II. FORMULATION OF THE PROBLEM

In our approach the adsorption equilibrium is describ
by the homottatic patch approximation@6#, and thus we
assume the validity of Eqs.~1!–~6! of Sec. I. In addition,
we assume that the activation energiesE6 of the adsorption-
desorption processes and the local adsorption h
E52DH are related to each other by means of the lin
relations

E65E6
0 1b6DH5E6

0 2b6E, ~12!

whereb6 are proportionality~scaling! coefficients. The ex-
istence of the linear relationships~12! for adsorption kinetics
has been well documented in the literature of heterogene
catalysis, both experimentally and theoretically@8#. In the
literature of chemical kinetics, the relations~12! are referred
to as Polanyi relations or ‘‘linear free energy relations’’ ev
though they involve the adsorption enthalpy rather than
Gibbs or Helmholtz free energy. They are equivalent to l
ear free energy relations only if the entropy factors of
adsorption-desorption process, both thermodynamic and
netic, are the same for all active sites on the surface@8#.
From Eqs.~4! and ~12!, it follows that the scaling coeffi-
cientsb6 are related to each other by means of the relati
ship

b15b211. ~13!

An important consequence of the linear energy relations~12!
is that the rate coefficientsklocal

1 are deterministic functions
of the adsorption heatE52DH:
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klocal
6 ~T!5klocal

6 ~`!$exp@E/kBT#%b6, ~14!

and thus, both for thermodynamic and kinetic variables,
global averages can be expressed in terms of the probab
densityp(E) of the adsorption heat.

In order to describe the random properties of the trapp
times, we use the theory of lifetime distributions of acti
intermediates in complex chemical systems@7#. We formally
represent the adsorption-desorption process as a chemic
action

X1Y~E!�Z~E! ~15!

and denote by@X#5C the concentration of chemical in th
solution, by @Y(E)#5y(E)dE the surface concentration o
free sites with an adsorption heat betweenE andE1dE, and
by @Z(E)#5z(E)dE the corresponding surface concentrati
of occupied sites. We also introduce a joint density funct
for the adsorption heat and the trapping time:

hz~t,E!dE dt with z~E!dE5dEE hz~t,E!dt. ~16!

Herehz(t,E)dE dt is the surface concentration of occupie
sites with an adsorption heat betweenE and E1dE and
which has trapped a molecule for a time interval betweet
andt1dt. The density function can be computed from t
balance equations

S ]

]t
1

]

]t Dhz~t,E!dE dt52hz~t,E!klocal
2 ~`!

3$exp@E/kBT#%b121, ~17!

hz~t50,E!5Cy~E!k1
0 $exp@2E/kBT#%b1 ~18!

In terms of the density functionhz(t,E)dE dt, we can com-
pute the conditional probability density

w~tuE!5
hz~t,E!

*hz~t,E!dt
with E w~tuE!dt51 ~19!

of the trapping time corresponding to a given value of t
adsorption heat. Finally, the unconditional probability de
sity of the trapping times can be evaluated by averaging o
all possible values of the adsorption heat:

w~t!5E w~tuE!p~E!dE with E w~t!dt51. ~20!

By using our approach it is possible to compute the pr
ability density of the trapping times,w~t!, in terms of the
probability densityp(E) of the adsorption heat. In order t
compare our approach with the experimental data of Dra
and Zanette, we have to assume a model for this probab
density. In the following we use the Zeldovich-Roginsk
model @9#, for which the adsorption heat can take any po
tive value between zero and infinity, and the probability de
sity p(E) is exponential:
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p~E!5~kBT* !21 exp@2E/~kBT* !#

with E
0

`

p~E!dE51, T* .T. ~21!

The physical meaning of the Zeldovich-Roginksii model h
been discussed in detail in the literature@9,10#: it corre-
sponds to a canonical distribution ‘‘frozen’’ at a temperatu
T* .T, whereT is the current temperature of the syste
The value of the characteristic temperatureT* .T provides
information about the history of processing the surface.

III. FRACTAL ADSORPTION EQUILIBRIUM
AND GENERALIZED FREUNDLICH ISOTHERM

We begin the analysis of our model by studying the a
sorption equilibrium. At equilibrium, the adsorption ra
equals the desorption rate, resulting in

Cy~E!klocal
1 ~`!$exp@E/kBT#%b1

5z~E!klocal
2 ~`!$exp@E/kBT#%b121. ~22!

In addition, the total number of sites, occupied and free
conserved, and thus we have the balance equation

y~E!1z~E!5u~E!, ~23!

whereu(E)dE is the total number of sites, free and occupie
with an adsorption heat betweenE and E1dE. By solving
Eqs.~22! and ~23!, we come to

z~E!5u~E!
CKlocal

eq ~`!exp@E/~kBT!#

11CKlocal
eq ~`!exp@E/~kBT!#

, ~24!

where the local equilibrium constantsK local
eq (T) andK local

eq (`)
for temperatureT are expressed as ratios of the correspo
ing forward and backward rate coefficients:

K local
eq ~T!5klocal

1 ~T!/klocal
2 ~T!5K local

eq ~`!exp@2DH/~kBT!#,

~25!

K local
eq ~`!5klocal

1 ~`!/klocal
2 ~`!. ~26!

By integrating Eq.~24! over all possible values of the ad
sorption heat, we recover Eq.~6! for the overall adsorption
isotherm:

u5
Z~C!

U
5E CKlocal

eq ~`!exp@2E/~kBT!#

11CKlocal
eq ~`!exp@2E/~kBT!#

p~E!dE,

~27!

where

Z~C!5E z~E!dE U5E u~E!dE ~28!

is the total surface concentration of occupied sites and

U5E u~E!dE ~29!

is the total surface concentration of active sites, free
occupied. In Eq.~27! the probability densityp(E)dE is ex-
s

.

-

is

,

-

d

pressed as a ratio between the surface concentrationu(E)dE
of active sites with the adsorption heat betweenE and E
1dE, and the total surface concentrationU of active sites:

p~E!dE5u~E!dE/U. ~30!

We insert the Zeldovich-Roginskii distribution~21! into
Eq. ~27! and evaluate the integral over the adsorption heaE.
After a number of transformations we obtain

u5a„CKlocal
eq ~`!…aH B~12a,a!

2BS 12a,a;
CKlocal

eq ~`!

11CKlocal
eq ~`!

D J
5„CKlocal

eq ~`!…a
pa

sin~pa!
2a„CKlocal

eq ~`!…a

3BS 12a,a;
CKlocal

eq ~`!

11CKlocal
eq ~`!

D , ~31!

where

B~p,q!5E
0

1

xq21~12x!q21dx, q,p.0, ~32!

B~p,q;x!5E
0

x

xq21~12x!q21dx, q,p.0, x>0,

~33!

are the complete and the incomplete beta functions, res
tively, and

a5T/T* , 1.a.0, ~34!

is a scaling exponent between zero and unity.
From Eq.~31! we notice that, in the limit of very smal

concentrations in solution,C→0, we recover the Freundlich
isotherm@10#

u;„CKlocal
eq ~`!…a

pa

sin~pa!
as C→0. ~35!

In the other limit of large concentrations, the adsorption is
therm ~31! tends towards a constant value:

u→1 as C→`. ~36!

IV. TRAPPING-TIME DISTRIBUTIONS

At local equilibrium the time derivative in Eq.~17! is
equal to zero and the joint density functionhZ(t,E) can be
easily evaluated. By integrating Eq.~17! with the initial con-
dition ~18!, we obtain

hZ~t,E!5Cy~E!klocal
1 ~`!exp@b1E/kBT#

3exp$2tklocal
2 ~`!exp@~b121!E/~kBT!#%

5u~E!
CKlocal

eq ~`!exp@b1E/~kBT!#

11CKlocal
eq ~`!exp@E/~kBT!#

klocal
2 ~`!

3exp$2tklocal
2 ~`!exp@~b121!E/~kBT!#%.

~37!
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By combining Eqs.~19! and ~38!, we can compute the con
ditional probability densityw~tuE! of the trapping times cor-
responding to a given value of the adsorption heat:

w~tuE!5klocal
2 ~`!exp@~b121!E/~kBT!#

3exp$2tklocal
2 ~`!exp@~b121!E/~kBT!#%.

~38!

By using Eqs.~14!, Eq. ~37! can be rewritten in a simple
form

w~tuE!5klocal
2 ~E,T!exp$2tklocal

2 ~E,T!%. ~39!

We notice that the conditional probability density of the tra
ping times is an exponential with a characteristic decay
klocal

2 (E,T). In particular, the conditional average value of t
trapping times is equal to the reciprocal value of the de
rate,klocal

2 (E,T):

^t~E!& u«5E
0

`

tw~tuE!dt51/klocal
2 ~E,T!. ~40!

The unconditional probability density of the trappin
times can be evaluated from Eqs.~20!, ~21!, and~38!. After
some algebra we come to

w~t!5at2@~11a!/~12b1!#@klocal
2 ~`!#2@~a1b1!/~12b1!#

3gS 11a

12b1
,tklocal

2 ~`! D , ~41!

where

g~a,x!5E
0

x

ta21 exp~2t !dt with a.0, x>0,

~42!

is the incompleteg function. In Eq.~41!, for physical con-
sistency we have to assume that

12a

2
.b1.2a. ~43!

These restrictions must be introduced in order to ensure
non-negativity and normalization to unity of the probabili
density of trapping times. We shall see later that restricti
~43! are fulfilled by the experimental data reported by Dra
and Zanette. Unlike the law~11! for w~t! derived by Drazer
and Zanette, the functionw~t! given by Eq.~41! is a properly
defined probability density; that is, it is non-negative a
normalized to unity.

The probability density~41! for the trapping time has the
same type of asymptotic behavior as the improper proba
ity density ~11! derived by Drazer and Zanette. We have

w~t!;a„klocal
2 ~`!…2@~a1b1!/~12b1!#

3GS 11a

12b1
D t2@~11a!/~12b1!#

5
J aeff

t11aeff
as t→`, ~44!
-
te

y

he
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il-

where the characteristic timeJ and the effective scaling ex
ponentaeff are given by

J5
1

klocal
2 ~`!

FaGS 11a

12b1
D G ~12b1!/~a1b1!

, ~45!

aeff5
a1b1

12b1
with 1.aeff.0 ~46!

and

G~a!5E
0

`

ta21 exp~2t !dt with a.0 ~47!

is the complete gamma function. All positive moments
order bigger thanaeff are infinite:

^tm&5` for m.aeff . ~48!

This is a typical feature for a statistical fractal probabili
density@2,4#.

In conclusion, in this section we have shown that,
combining the classical homottatic approximation with t
theory of lifetime distributions of reaction intermediates
complex chemical systems, it is possible to derive a distri
tion of trapping times with a long tail, which is compatib
with the experimental data of Drazer and Zanette and
properly normalized to unity. The proportionality law~7!
suggested in@5# is neither necessary nor appropriate for t
development of the theory.

V. COMPARISON WITH THE DRAZER-ZANETTE
APPROACH: DISCUSSION

We start out the comparison between our theory and
Drazer-Zanette approach by searching for the possible e
tence of a proportionality law similar to Eq.~7!. By using the
linear free energy relations~12!, we can express the loca
desorption rateklocal

2 (E) in terms of the equilibrium constan
K local

eq (E,T). We have

klocal
2 ~E,T!5klocal

2 ~`!H K local
eq ~E,T!

K local
eq ~`! J b121

. ~49!

By combining Eqs.~40! and ~49!, we come to

^t~E!& u«5
1

w
@K local

eq ~E,T!#12b1, ~50!

where

w5klocal
2 ~`!@K local

eq ~`!#12b1. ~51!

Equation~50! has a similar structure as Eq.~7! postulated by
Drazer and Zanette. However, Eqs.~7! and ~50! are very
different: Equation~7! is a deterministic relation betwee
two random quantities, the fluctuating values of the adso
tion heat and the trapping time, whereas Eq.~50! is a relation
between the conditional average of the trapping time co
sponding to a given value~realization! of the adsorption hea
and the value of the adsorption heat. The differences betw
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the two approaches is obvious in the corresponding exp
sions of the joint probability distribution of the trapping tim
and adsorption heat:

c~t,E!dt dE with the normalization condition

E
0

`E
0

`

c~t,E!dt dE51. ~52!

Within the framework of the homottatic patch approxim
tion, the correct expression of this joint probability is give
by

c~t,E!dt dE5w~tuE!dt p~E!dE
5klocal

2 ~E,T!exp$2tklocal
2 ~E,T!%p~E!dt dE.

~53!

As expected, the adsorption heat, which is a thermodyna
function, is independent of the trapping time, which is
kinetic variable. The opposite is, however, not true: t
trapping time depends on the value of the adsorption h
and the relation between these two variables is not determ
istic, but random, and is expressed by the conditional pr
ability density~39!.

The Drazer-Zanette conjecture~7! implies that the condi-
tional probability densityw~tuE! is given by ad function

w~tuE!5dFt2
1

w
K local

eq ~E,T!G ,
which corresponds to the following joint probability densit

c~t,E!dt dE5dFt2
1

w
K local

eq ~E,T!Gp~E!dt dE. ~54!

Equation~54! is not compatible with Eq.~53! as well as with
Eq. ~39! derived from the homotattic patchwise approxim
tion.

Another difference between the two theories refers to
scaling conditions resulting from the computations. O
theory depends on two independent scaling exponents
fractal exponenta entering the Freundlich adsorption is
therm ~35! and one of the scaling parametersb1 or b2

entering the linear free energy relations~12!. The fractal ex-
ponentaeff , which determines the shape of the tail of t
trapping-time distribution, is a combination of these tw
scaling exponents, given by Eq.~46!. Drazer and Zanette
have not assumed the existence of linear energy relat
ships, and because of that, their theory has only one sca
exponent which determines both the shape of the Freund
isotherm and the tail of the trapping-time distribution.

The desorption experiments presented in@5# show that

a5aeff50.63. ~55!

By applying Eqs.~13! and~46!, we can evaluate the numer
cal values of the scaling exponentsb6 entering the linear
energy relations~12!,

b150, b2521 ~56!

and, thus
s-

ic

e
t,

n-
-

-

e
r
he

n-
ng
ch

E15E1
0 5E2

0 5const, ~57!

E25E2
0 1E. ~58!

It follows that the adsorption rate is constant for all adso
tion sites, irrespective of the value of the adsorption he
Only the desorption rate depends on the adsorption heat
simple way: up to a constant additive factor, the activat
energy of the desorption process is equal in magnitude to
adsorption heat of the site considered. The activation ene
profiles for the adsorption-desorption process have the f
represented schematically in Fig. 1, which represents dif
ent energy profiles for the adsorption-desorption process
sites characterized by different adsorption heats. All ene
profiles start from the same energy valueU liquid correspond-
ing to a molecule in the liquid phase and go up to the sa
maximum valueUmax. The descending parts of the activ
tion energy profiles are different for sites with different a
sorption heats. The difference between the energyUsite(j )
corresponding to the surface site of typej and the character
istic energyU liquid corresponding to a molecule in the liqui
phase is equal to the variation of enthalpy during the adso
tion process on the sitej:

DH j5Usite~ j !2U liquid<0. ~59!

The corresponding adsorption heat is equal to the varia
of the enthalpy with a changed sign:

FIG. 1. Schematic representation of the activation energy p
files for the adsorption-desorption process studied in the exp
ments of Drazer and Zanette@5#. The different activation energy
profiles correspond to adsorption sites characterized by diffe
adsorption heats. All energy profiles start from the same va
U liquid , which corresponds to the liquid phase, increase up to
same maximum valueUmax, and then decrease to various final va
ues Usite~1! ,Usite~2! ,Usite~3! , . . . , corresponding to surface site
characterized by various adsorption heats.
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E52DH j5U liquid2Usite~ j !>0. ~60!

The activation energy of the adsorption process is equa
the difference between the maximum value of the ener
Umax corresponding to the top of the various energy profi
and the characteristic energyU liquid corresponding to a mol
ecule in the liquid:

E15Umax2U liquid . ~61!

Similarly, the activation energiesE2
( j ) of the desorption pro-

cesses corresponding to the various sites of the surface
given by

E2
~ j !5Umax2Usite~ j ! . ~62!

We notice that, by combining Eqs.~60!–~62!, we recover the
linear energy relation~58!, compatible with the experimenta
data of Drazer and Zanette. We have

E2
~ j !5Umax2Usite~ j !5~Umax2U liquid!1~U liquid2Usite~ j !!

5E2
0 1E, ~63!

where

E2
0 5Umax2U liquid5E15E1

0 . ~64!

In the particular case described by Eqs.~56!–~58!, the
relation~50! between the conditional average^t(E)& u« of the
trapping time attached to a given adsorption site and
local equilibrium constantK local

eq (E,T) for the adsorption pro-
cess becomes a proportionality

^t~E!& u«5
1

w
K local

eq ~E,T!. ~65!

The similarity between Eqs.~7! and ~65! is deceiving; as
explained before, the terms on the left side of these equat
have different meanings: in Eq.~7!, t is a random variable
the fluctuating value of the trapping time, whereas in E
~65! ^t(E)& u« is the conditional average of the trapping tim
corresponding to a given value of the adsorption heat.
similar structure of Eqs.~7! and ~65! is the main reason fo
which Drazer and Zanette managed to achieve a succe
data fit by using a theoretical approach based on the con
ture ~7!.

Now we discuss an issue related to the temperature
pendence of the fractal exponenta of the Freundlich adsorp
tion isotherm. In our derivation we have used the origin
Zeldovich-Roginskii adsorption heat distribution@Eq. ~21!#.
This distribution leads to the consequence that the fra
exponenta is a linear function of the absolute temperatureT
of the system@Eq. ~34!#, a result which is consistent with th
experimental data for many heterogeneous systems. H
ever, more recent research reported in the literature sh
that the exponenta can be a nonlinear function of temper
ture or even a constant. Theoretical treatments of these
tems are based on a generalization of the Zeldov
Roginskii distribution of the type@10#
to
y,
s

are

e

ns

.

e

ful
c-

e-

l

al

w-
ws

ys-
-

p~E!5
a

kBT
exp@2aE/~kBT!# with E

0

`

p~E!dE51,

~66!

where nowa is a positive scaling parameter. The theoretic
justification of the distribution~66! is related to the con-
straint that the adsorption heat is a linear function of
coverage of the surface. This linear dependence of the
sorption heat on the coverage is encountered for many c
lytic systems@10#. The theory developed in this article is als
valid in the case of the generalized distribution~21!, with the
difference that now the temperature dependence of the s
ing parametera is generally unknown. In Ref.@5# there are
no details concerning the temperature variation of the sca
parametera. An experimental study of the temperatu
variation of the parametersa and aeff would be of interest
for elucidating the detailed mechanism of the adsorption p
cess. In particular, a linear dependence of temperature w
indicate that the distribution of adsorption heats is given b
frozen Maxwell-Boltzmann distribution of the Zeldovich
Roginskii type.

We finish our discussion by pointing out some limitatio
of our approach. Many of the equations derived in this arti
are independent of the minimum and maximum values of
adsorption heatE. Although in the general formulation of ou
theory we have not specified the integration limits with r
spect toE, in the final computations we have assumed thaE
can take any value between zero and infinity. Even thou
this range of variation ofE is commonly used in the litera
ture, it may be subject to criticism. A straightforward ana
sis of our equations shows that the modification of the low
integration limit from zero to an arbitrary~finite! positive or
negative value does not change the shape of the tail of
probability density of the trapping times. The values of t
scaling exponents computed in this article remain u
changed: only the expressions for some proportionality f
tors change. In the case of the upper integration limit, ho
ever, the situation is different. From the mathematical po
of view, the long-time tails predicted by our theory are d
to the fact that we have assumed that there is no finite up
limit for the values of the adsorption heatE. However, a
rigorous physical analysis shows that an infinite adsorpt
heat is a mathematical artifact. The maximum adsorpt
heat is associated with the closest possible packing confi
ration at a separation distance corresponding to the minim
of the van der Waals potential. Therefore, even though
maximum adsorption heat may be very large, it is, howev
finite. In order that our theory be valid, it is enough that t
maximum activation energy, although finite, be lar
enough, so that the beginning of the tail of the trapping ti
probability density obeys a scaling law of the negati
power-law type. The finite value of the maximum adsorpti
heat results in a cutoff of the power-law portion of the tail.
such a cutoff exists outside the range of times experiment
available, it does not affect the predictions of our theory. W
notice that such cutoff values for the ends of the tails of
fractal probability densities are commonly encountered in
literature~see, for example, Refs.@11–13#!. Usually, perfect
statistical fractals for which the self-similarity of the prob
ability laws acts up to infinity do not exist: self-similarity i
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generally valid on a finite range of the random variabl
limited by cutoff values.

Another simplification in our analysis is related to th
graphical representation of the activation energy profiles
Fig. 1. The energy of a molecule in the liquid phase is
random variable, which obeys the laws of equilibrium sta
tical mechanics. In Eqs.~59!–~64!, as well as in Fig. 1 we
have neglected this energy distribution. This approximati
which is also commonly used in the literature, is justified
the fact that the energy distribution in the liquid phase
generally much narrower than the energy distribution o
heterogeneous surface.

VI. CONCLUSIONS

In this paper a theoretical approach has been introduce
order to interpret the Drazer-Zanette experiments on pow
law trapping-time distributions in porous media. The mod
suggested here is based on the theory of lifetime distribut
of active intermediates in complex chemical systems. T
mathematical crux of the paper is the following. Drazer a
Zanette assume that two random variables, the trapping
t of a molecule on the surface and the local equilibriu
constantK local

eq (E,T) for the adsorption on a site characteriz
by the adsorption heatE, have a relationship of the formt
;K local

eq (E,T), whereas the theory presented here proves
-

se

s

-

,

n
a
-

,

s
a

in
r-
l
s
e
d
e

at

^t(E)& u«;@K local
eq (E,T)#12b1, where^t(E)& u« is a conditional

average andK local
eq (E,T) is the value of the equilibrium con

stant for a single realization of the process. The second r
tion is a consequence of a physically and mathematic
consistent theory and explains the experimental data.
relation suggested by Drazer and Zanette, even thoug
‘‘explains’’ the experimental results, leads to theoretical
consistencies.

Although here we focus on the system studied experim
tally by Drazer and Zanette, the results presented in this
ticle have more general implications. The calculations p
sented in this paper can be easily extended to m
complicated systems for which statistical fractal distributio
are needed for the interpretation of experimental data—
example, to the case of protein-ligand interactions far fr
equilibrium @14#.
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